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Abstract. Five-dimensional polytopes play a role in string theory, especially when
they are reflexive. It is not trivial to find reflexive polytopes and there exists genetic
approaches to finding them. We are implementing a genetic algorithm in Python and
have found new five-dimensional polytopes.

1. Introduction

Before we start with the implementation and the actual polytop search, we want to
explain a few basics.

1.1. What is a polytope? First of all, when we talk about polytopes, we mean lattice
polytopes. In mathematics, a lattice in Euclidean space is a regular grid of points
stretching infinitely in all directions. Imagine a 3D grid where points are spaced evenly
in all three dimensions. These points have integer coordinates. In two dimensions, it
would look like a regular grid of dots on a piece of graph paper.

A polytope is a general term that encompasses geometric shapes in any number of
dimensions. In two dimensions, a polytope is a polygon (like a square or triangle), in
three dimensions, it’s a polyhedron (like a cube or pyramid), and in higher dimensions,
we simply call them polytopes.

A lattice polytope is a polytope whose vertices are all located at the points of a
lattice. That is, the vertices of a lattice polytope is integer-valued.

More formally, a d-dimensional lattice polytope P is the convex hull in Rd of a finite
number of lattice points x1, . . . , xm ∈ Zd ⊂ Rd. We can list these points in the format
of an d×m matrix X = (x1, . . . , xm) whose columns are the generators.

The first important quantity is the set of vertices {v1, · · · , vNv} where the number of
such vertex points denotes Nv(P ) ≤ m. It is less than or equal to the number of lattice
points of the polytope as one could have, for example, three colinear lattice points the
middle one not being included in the vertex set. We can combine these vertices into an
d×Nv matrix V = (v1, · · · , vNv) called the vertex matrix.

2010 Mathematics Subject Classification. 52B05.
Key words and phrases. Polytopes, Calabi-Yau Manifold, Genetic Algorithm.

1

https://orcid.org/0000-0003-1691-4790
https://orcid.org/0000-0001-5257-2236


2 A. RAHN, E. SULTANOW, A. HATZIILIOU, AND M. AMIR

Now, define H = {x ∈ Rd | u · x = b} be a hyperplane where u ∈ Zd is a primitive
inner normal and b ∈ Q is some rational number (“Hesse normal form” [1, p. 28,71], [2,
p. 369]). “Primitive” means the coordinates of the normal are coprime [3] (comparable
to the concept of an unit vector). “Inner” means that the normal is directed towards
the inside of the polytope, meaning in the direction of the origin. We call a hypersurface
valid if the polytope P is contained in the negative half-space (if u ·x ≤ b for all x ∈ P ).

We call a face of P to be the intersection of P with all valid hyperplanes H. A facet
is a face of dimension d− 1.

1.2. What is the lattice distance? The lattice distance between a lattice hyperplane
H ⊂ Rd and a lattice point x ∈ Zd is dist(x,H) := |f(x)|, where f is a primitive
functional with f(H) = 0 [4, p. 50].

We can also say, the lattice distance dist(x, F ) of a lattice point x of a polytope P
from a facet F of P is defined as ⟨u, x⟩− b = u ·x− b, where u ∈ Zd is a primitive inner
normal of F and the hyperplaneH spanned by F is given asH = {x ∈ Rd | u·x = b} [5].

1.3. What makes a lattice polytope reflexive? The reflexive property of a poly-
tope is given if the polytope has only one interior point and the lattice distance of each
polytope’s facet to this interior point is 1.

Hence we want polytopes with the following two properties

• The Interior Point (IP) property. A polytope satisfies the IP property if its only
interior lattice point is the origin O =

(
0 0 0 0 0

)
.

• The lattice distance between each facet of the polytope and its sole interior
point, namely the origin, is 1.

Two polytopes P and Q with the same number of vertices are considered equivalent
if their vertices are related by some integer linear transformation plus permutation
matrix. An easy example to thing about is taking a square around the origin in Z2 and
rotating it by 45 degrees. The resulting shape is a diamond around the origin but in
essence its the same polytope as the original one.

Berglund, He, Heyes, Hirst, Jejjala, and Lukas [6] have demonstrated how a genetic
approach can be used to identify new reflexive polytopes. The authors have found
various polytopes and published their data set on GitHub [7]. We take up this idea and
embark on a search for new five-dimensional polytopes.

For the quest of reflexive polytopes by genetic approach, we choose the following
initial parameters :

• The dimension d = 5.
• The number of vertices of the polytope m. This will serve to organise points of
P in a 5×m matrix.
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• The value of xmin and ν which will serve as the range for the variables xi
a of the

matrix where xi
a ∈ {xmin, · · · , xmin+2ν +1}. This is simply a range for the size

of the coordinates of the vertices of P where ν is the number of bits used for
each matrix entry. This serves to define the environment E which will be the
space of all d×m matrices with interval values in this range (phenotypes).

2. Implementing the genetic algorithm

To be able to get the most out of the Genetic Algorithm, the possibility of adjustments
on several ends is needed. Therefore, no Genetic Algorithm Library was used. Instead,
the whole structure was built up from the scratch. The chosen approach is based on
previous work in the fields of Genetic Algorithms.

Genetic Algorithms are searching the whole solution space through applying the same
steps over and over again to a number of solutions. The terms for a Genetic Algorithm
in our context are as following: Representation: As a polytope can be easily represented
by a matrix, we chose such a matrix to be the representation and thus the base for our
algorithm. Generation: A set number n, which describes the randomly created number
polytopes. n stays always the same during the execution of the Algorithm. Population:
A set number m, which describes the number of Generations the algorithm creates.
Chromosome: A chromosome describes a solution of the given problem. In our case,
the matrix of a polytope. Gen: A Gen describes a point in a polytope representation.

Moreover we need to be able to rate those polytope representations. The rating is
based on a fitness function, which calculates a numeric value for the given chromosome.
Berglund et al. [6] offer a highly performance intense function, which includes the
number of interior points as well as the lattice distance to the origin. As our target is
to find as many polytopes as possible, performance is a important factor. By excluding
the interior point property the performance dramatically improves especially for bigger
polytopes which can often appear as the representation matrix of the initial polytopes
are created randomly.

Moreover the implemented fitness function has a second step, that apply after finding
a reflexive polytope. In that case, to make sure not all reflexive polytopes have the same
fitness, we chose bigger polytopes to be more valuable that smaller ones. Therefore two
options are in place: - adding up the absolute Value of every single number in the
given representation matrix. - Take the difference between the biggest and the smallest
number given in the representation matrix.

The algorithm moreover uses a random one point crossover and simple mutation
functions to systematically evolve the given solution space.

After defining basic information like the number of Generations, the number of Chro-
mosomes per Generation, the dimension of the polytope and upper and lower boundary
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for the random polytope creation, the Algorithm is ready to use and provides solutions
depending on the set constants.

3. Two coordinates make the race

We identified that 2 coordinates form a major adjustment screw.

4. Results

With the given Algorithm we were able to find new and way bigger polytopes than
identified by now for example by [7] as of 2024-01-01.

The two matrices, see equation (1) and equation (2), each contain the 9 vertices of
newly identified polytopes that have a coordinate difference of 19 and thus are substan-
tially larger than those known so far.

(1) P1 =


0 0 0 −3 −1 3
−1 2 1 0 −1 −2
1 −2 0 2 1 1
−1 1 −1 −7 −2 5
−5 −69 −4 0 0 141



(2) P2 =


0 0 0 −3 −1 3
−1 2 1 0 −1 −2
1 −2 0 2 1 1
−1 1 −1 −7 −2 5
−5 −99999 −4 0 0 200001


The interior point of both polytopes is

(
0 0 0 0 0

)
. Figure 1 displays these two

newly found polytopes, projected from 5D into 3D.

Figure 1. Newly found polytopes, the one given by matrix (1) on the
left and the other one given by matrix (2) on the right
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The reflexivity feature of this polytope can be verified using Sage as demonstrated
by Listing 1 or using the CYTools framework [8] as shown by Listing 2, both given in
the appendix A. The complete code is available at GitHub [9].

5. Conclusion and outlook

In the next steps, we optimize the genetic search algorithm and increase the search
space to larger polytopes, that is, we expand the search for polytopes that have larger
coordinates.

Another next step is evolving the visualization framework to provide a better and
unambiguous graphical representation of the results. Barnette [10] as well as Wang,
Yu, Chung, Gdawiec, and Ouyang [11], for instance, provide promising approaches that
we could build on.
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Appendix A. Listings

1 p = LatticePolytope ([(-2, 3, 1, -3, 0), (1, -2, -1, 2, 0), (4, -4, 1,

2, -2), (1, 2, 3, 0, -1), (-3, 3, -1, -2, 2), (1, 2, 3, -3, -1),

(-2, -1, -3, 0, 2)])

2 p.is_reflexive ()

Listing 1. Verify the polytope’s reflexivity using Sage

1 from cytools import Polytope

2 vertices = [[-2, 3, 1, -3, 0],

3 [1, -2, -1, 2, 0],

4 [4, -4, 1, 2, -2],

5 [1, 2, 3, 0, -1],

6 [-3, 3, -1, -2, 2],

7 [1, 2, 3, -3, -1],

8 [-2, -1, -3, 0, 2]]

9 p = Polytope(vertices)

10 print(p.is_reflexive ())

Listing 2. Verify the polytope’s reflexivity using CYTools

1 p = Polytope(vertices)

2 print(p.hpq(1,1,lattice="N"))

3 print(p.hpq(1,2,lattice="N"))

4 print(p.hpq(1,3,lattice="N"))

5 print(p.hpq(2,2,lattice="N"))

6 print(p.chi(lattice="N"))

Listing 3. Retrieve the Hodge number hp,q and the Euler characteristic
using CYTools

We used the function IsIsomorphic(P,Q) : TorPol,TorPol -> BoolElt, Map in
Magma Computational Algebra System to check whether two polytopes P and Q are
isomorphic, that is if there exists an element in GLn(Z) sending P to Q.
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